Características del método Científico. PaleoArgentina Web.
 
    El Portal Paleontologico mas completo de lengua hispana. Gracias por visitarnos y esperamos su colaboracion.
 

PaleoArgentina Web - Portal Paleontológico

I Pagina Principal I Presentación I Agregar en Mis Favoritos I Imprimir  I Copyright  I Correo I Colabore I Gmail I Grupo Paleo

Características del método Científico.

Método científico, método de estudio sistemático de la naturaleza que incluye las técnicas de observación, reglas para el razonamiento y la predicción, ideas sobre la experimentación planificada y los modos de comunicar los resultados experimentales y teóricos.

La ciencia suele definirse por la forma de investigar más que por el objeto de investigación, de manera que los procesos científicos son esencialmente iguales en todas las ciencias de la naturaleza; por ello la comunidad científica está de acuerdo en cuanto al lenguaje en que se expresan los problemas científicos, la forma de recoger y analizar datos, el uso de un estilo propio de lógica y la utilización de teorías y modelos. Etapas como realizar observaciones y experimentos, formular hipótesis, extraer resultados y analizarlos e interpretarlos van a ser características de cualquier investigación.

En el método científico la observación consiste en el estudio de un fenómeno que se produce en sus condiciones naturales. La observación debe ser cuidadosa, exhaustiva y exacta.

A partir de la observación surge el planteamiento del problema que se va a estudiar, lo que lleva a emitir alguna hipótesis o suposición provisional de la que se intenta extraer una consecuencia. Existen ciertas pautas que han demostrado ser de utilidad en el establecimiento de las hipótesis y de los resultados que se basan en ellas; estas pautas son: probar primero las hipótesis más simples, no considerar una hipótesis como totalmente cierta y realizar pruebas experimentales independientes antes de aceptar un único resultado experimental importante.

La experimentación consiste en el estudio de un fenómeno, reproducido generalmente en un laboratorio, en las condiciones particulares de estudio que interesan, eliminando o introduciendo aquellas variables que puedan influir en él. Se entiende por variable todo aquello que pueda causar cambios en los resultados de un experimento y se distingue entre variable independiente, dependiente y controlada.

Variable independiente es aquélla que el experimentador modifica a voluntad para averiguar si sus modificaciones provocan o no cambios en las otras variables. Variable dependiente es la que toma valores diferentes en función de las modificaciones que sufre la variable independiente. Variable controlada es la que se mantiene constante durante todo el experimento.

En un experimento siempre existe un control o un testigo, que es una parte del mismo no sometida a modificaciones y que se utiliza para comprobar los cambios que se producen.

Todo experimento debe ser reproducible, es decir, debe estar planteado y descrito de forma que pueda repetirlo cualquier experimentador que disponga del material adecuado.

Los resultados de un experimento pueden describirse mediante tablas, gráficos y ecuaciones de manera que puedan ser analizados con facilidad y permitan encontrar relaciones entre ellos que confirmen o no las hipótesis emitidas.

Una hipótesis confirmada se puede transformar en una ley científica que establezca una relación entre dos o más variables, y al estudiar un conjunto de leyes se pueden hallar algunas regularidades entre ellas que den lugar a unos principios generales con los cuales se constituya una teoría.

Según algunos investigadores, el método científico es el modo de llegar a elaborar teorías, entendiendo éstas como configuración de leyes. Mediante la inducción se obtiene una ley a partir de las observaciones y medidas de los fenómenos naturales, y mediante la deducción se obtienen consecuencias lógicas de una teoría. Por esto, para que una teoría científica sea admisible debe relacionar de manera razonable muchos hechos en apariencia independientes en una estructura mental coherente. Así mismo debe permitir hacer predicciones de nuevas relaciones y fenómenos que se puedan comprobar experimentalmente.

Las leyes y las teorías encierran a menudo una pretensión realista que conlleva la noción de modelo; éste es una abstracción mental que se utiliza para poder explicar algunos fenómenos y para reconstruir por aproximación los rasgos del objeto considerado en la investigación.

Ecología.

Estudio de la relación entre los organismos y su medio ambiente físico y biológico. El medio ambiente físico incluye la luz y el calor o radiación solar, la humedad, el viento, el oxígeno, el dióxido de carbono y los nutrientes del suelo, el agua y la atmósfera. El medio ambiente biológico está formado por los organismos vivos, principalmente plantas y animales.

Debido a los diferentes enfoques necesarios para estudiar a los organismos en su medio ambiente natural, la ecología se sirve de disciplinas como la climatología, la hidrología, la física, la química, la geología y el análisis de suelos. Para estudiar las relaciones entre organismos, la ecología recurre a ciencias tan dispares como el comportamiento animal, la taxonomía, la fisiología y las matemáticas.

El creciente interés de la opinión pública respecto a los problemas del medio ambiente ha convertido la palabra ecología en un término a menudo mal utilizado. Se confunde con los programas ambientales y la ciencia medioambiental (véase Medio ambiente). Aunque se trata de una disciplina científica diferente, la ecología contribuye al estudio y la comprensión de los problemas del medio ambiente.

El término ecología fue acuñado por el biólogo alemán Ernst Heinrich Haeckel en 1869; deriva del griego oikos (hogar) y comparte su raíz con economía. Es decir, ecología significa el estudio de la economía de la naturaleza. En cierto modo, la ecología moderna empezó con Charles Darwin. Al desarrollar la teoría de la evolución, Darwin hizo hincapié en la adaptación de los organismos a su medio ambiente por medio de la selección natural. También hicieron grandes contribuciones naturalistas como Alexander von Humboldt, profundamente interesados en el cómo y el por qué de la distribución de los vegetales en el mundo.

Biomas.

Las grandes unidades de vegetación son llamadas formaciones vegetales por los ecólogos europeos y biomas por los de América del Norte. La principal diferencia entre ambos términos es que los biomas incluyen la vida animal asociada. Los grandes biomas, no obstante, reciben el nombre de las formas dominantes de vida vegetal.

Bajo la influencia de la latitud, la elevación y los regímenes asociados de humedad y temperatura, los biomas terrestres varían geográficamente de los trópicos al Ártico, e incluyen diversos tipos de bosques, praderas, monte bajo y desiertos. Estos biomas incluyen también las comunidades de agua dulce asociadas: corrientes, lagos, estanques y humedales. Los medios ambientes marinos, que algunos ecólogos también consideran biomas, comprenden el océano abierto, las regiones litorales (aguas poco profundas), las regiones bentónicas (del fondo oceánico), las costas rocosas, las playas, los estuarios y las llanuras mareales asociadas.

Ecosistemas.

Resulta más útil considerar a los entornos terrestres y acuáticos, ecosistemas, término acuñado en 1935 por el ecólogo vegetal sir Arthur George Tansley para realzar el concepto de que cada ecosistema es un todo integrado. Un sistema es un conjunto de partes interdependientes que funcionan como una unidad y requiere entradas y salidas. Las partes fundamentales de un ecosistema son los productores (plantas verdes), los consumidores (herbívoros y carnívoros), los organismos responsables de la descomposición (hongos y bacterias), y el componente no viviente o abiótico, formado por materia orgánica muerta y nutrientes presentes en el suelo y el agua. Las entradas al ecosistema son energía solar, agua, oxígeno, dióxido de carbono, nitrógeno y otros elementos y compuestos. Las salidas del ecosistema incluyen el calor producido por la respiración, agua, oxígeno, dióxido de carbono y nutrientes. La fuerza impulsora fundamental es la energía solar. Por último, en un nivel de organización superior se encuentran las relaciones entre los diferentes elementos o partes del ecosistema.

Energía y nutrientes.

Los ecosistemas funcionan con energía procedente del Sol, que fluye en una dirección, y con nutrientes, que se reciclan continuamente. Las plantas usan la energía lumínica transformándola, por medio de un proceso llamado fotosíntesis, en energía química bajo la forma de hidratos de carbono y otros compuestos. Esta energía es transferida a todo el ecosistema a través de una serie de pasos basados en el comer o ser comido, la llamada red trófica. En la transferencia de la energía, cada paso se compone de varios niveles tróficos o de alimentación: plantas, herbívoros (que comen vegetales), dos o tres niveles de carnívoros (que comen carne), y organismos responsables de la descomposición. Sólo parte de la energía fijada por las plantas sigue este camino, llamado red alimentaria de producción. La materia vegetal y animal no utilizada en esta red, como hojas caídas, ramas, raíces, troncos de árbol y cuerpos muertos de animales, dan sustento a la red alimentaria de la descomposición. Las bacterias, hongos y pequeños animales (generalmente invertebrados) que se alimentan de materia muerta se convierten en fuente de energía para niveles tróficos superiores vinculados a la red alimentaria de producción. De este modo la naturaleza aprovecha al máximo la energía inicialmente fijada por las plantas.

En ambas redes alimentarias el número de niveles tróficos es limitado debido a que en cada transferencia se pierde gran cantidad de energía (como calor de respiración) que deja de ser utilizable o transferible al siguiente nivel trófico. Así pues, cada nivel trófico contiene menos energía que el que le sustenta. Debido a esto, por ejemplo, los ciervos o los alces (herbívoros) son más abundantes que los lobos (carnívoros).

El flujo de energía alimenta el ciclo biogeoquímico o de los nutrientes. El ciclo de los nutrientes comienza con su liberación por desgaste y descomposición de la materia orgánica en una forma que puede ser empleada por las plantas. Éstas incorporan los nutrientes disponibles en el suelo y el agua y los almacenan en sus tejidos. Los nutrientes pasan de un nivel trófico al siguiente a lo largo de la red trófica. Dado que muchas plantas y animales no llegan a ser comidos, en última instancia los nutrientes que contienen sus tejidos, tras recorrer la red alimentaria de la descomposición, son liberados por la descomposición bacteriana y fúngica, proceso que reduce los compuestos orgánicos complejos a compuestos inorgánicos sencillos que quedan a disposición de las plantas.

Desequilibrios.

Los nutrientes circulan en el interior de los ecosistemas. No obstante, existen pérdidas o salidas, y éstas deben equilibrarse por medio de nuevas entradas o el ecosistema dejará de funcionar. Las entradas de nutrientes al sistema proceden de la erosión y desgaste de las rocas, del polvo transportado por el aire, y de las precipitaciones, que pueden transportar materiales a grandes distancias. Los ecosistemas terrestres pierden cantidades variables de nutrientes, arrastrados por las aguas y depositados en ecosistemas acuáticos y en las tierras bajas asociadas. La erosión, la tala de bosques y las cosechas extraen del suelo una cantidad considerable de nutrientes que deben ser reemplazados. De no ser así, el ecosistema se empobrece. Es por esto por lo que las tierras de cultivo han de ser fertilizadas.

Si la entrada de un nutriente excede en mucho a su salida, el ciclo de nutrientes del ecosistema afectado se sobrecarga, y se produce contaminación. La contaminación puede considerarse una entrada de nutrientes que supera la capacidad del ecosistema para procesarlos. Los nutrientes perdidos por erosión y lixiviación en las tierras de cultivo, junto con las aguas residuales urbanas y los residuos industriales, van a parar a los ríos, lagos y estuarios. Estos contaminantes destruyen las plantas y los animales que no pueden tolerar su presencia o el cambio medioambiental que producen; al mismo tiempo favorecen a algunos organismos con mayor tolerancia al cambio. Así, en las nubes llenas de dióxido de azufre y óxidos de nitrógeno procedentes de las áreas industriales, éstos se transforman en ácidos sulfúrico y nítrico diluidos y caen a tierra, en forma de lluvia ácida, sobre grandes extensiones de ecosistemas terrestres y acuáticos. Esto altera las relaciones ácido-base en algunos de ellos, mueren los peces y los invertebrados acuáticos y se incrementa la acidez del suelo, lo que reduce el crecimiento forestal en los ecosistemas septentrionales y en otros que carecen de calizas para neutralizar el ácido.

POBLACIONES Y COMUNIDADES.

Las unidades funcionales de un ecosistema son las poblaciones de organismos a través de las cuales circulan la energía y los nutrientes. Una población es un grupo de organismos de la misma especie que comparten el mismo espacio y tiempo. Los grupos de poblaciones de un ecosistema interactúan de varias formas. Estas poblaciones interdependientes forman una comunidad, que abarca la porción biótica del ecosistema.

Especies y especiación.

Conceptos fundamentales en la clasificación de los organismos vivos. En términos sencillos, una especie es un grupo de organismos que se caracterizan por tener una forma, un tamaño, una conducta y un hábitat similares y porque estos rasgos comunes permanecen constantes a lo largo del tiempo. Una especie biológica se define como un grupo de poblaciones naturales cuyos individuos son capaces de aparearse entre sí y producir una descendencia viable. Esta definición recoge tanto las relaciones evolutivas que existen entre los miembros de una especie, como sus peculiaridades físicas y hace especial hincapié, en que las especies evolucionan de forma autónoma.

Existen otras definiciones de especie, entre ellas, la más antigua, es la idea de la especie como un tipo determinado de seres. Este concepto tiene su origen en la obra de Platón y Aristóteles. Según esta definición, la especie representa una forma perfecta, mientras que las variaciones individuales son simples imperfecciones de su expresión. Por otra parte, esta teoría se fundamenta sólo en la simple observación ya que considera como especie al grupo de individuos que se asemejan entre sí y que está separado de otros grupos por diferencias morfológicas, es decir, por variaciones en la estructura y en la forma. Estos conceptos son adecuados para clasificar objetos inanimados, como los minerales, en los que las similitudes particulares entre objetos se corresponden con semejanzas en los procesos físicos que dan lugar a los mismos. Sin embargo, los organismos vivos están influidos también por sus antecedentes genealógicos, es decir, por los caracteres que heredan de sus generaciones precedentes. De esta manera, la definición anterior resulta inapropiada. Ciertas características de los organismos pueden reflejar su historia pasada, pero pueden ser irrelevantes o estar afectadas sólo parcialmente por las condiciones ambientales. Un ejemplo clásico es el apéndice vermiforme humano que constituye un vestigio de un antepasado con hábitos herbívoros.

Además de ser inapropiadas, las clasificaciones basadas en criterios tipológicos y morfológicos resultan inútiles cuando se intentan aplicar a los tiempos geológicos, o a regiones geográficas extensas. Una característica que se aplica para diferenciar dos especies en un lugar determinado puede no ser válida en otro lugar. Esto es así, porque las especies cambian de morfología, de conducta, y de hábitat en el espacio y en el tiempo geológico. El concepto biológico de especie tiene en cuenta lo anterior pero las definiciones tipológicas y morfológicas consideran a los organismos sólo como formas estáticas.

La especiación es el proceso mediante el cual se forman las especies. En una primera etapa, denominada de aislamiento extrínseco, los miembros de una especie existente comienzan a separarse entre sí, debido a algún suceso externo, como un cambio climático, la formación de una barrera física (la aparición de una montaña, por ejemplo), o la colonización de un nuevo hábitat. Esta separación puede ocurrir también porque, durante el transcurso de centenares de generaciones, los individuos pueden necesitar dispersarse desde el ámbito geográfico de su especie a otras zonas. En una segunda etapa, de diferenciación, las poblaciones aisladas divergen genéticamente, lo que pueden realizar con más rapidez que aquellas que están en contacto con otras poblaciones. Esto ocurre, bien debido al azar, o bien como resultado de la selección natural. En la tercera etapa, llamada de aislamiento intrínseco, ciertas formas de aislamiento evolucionan en el seno de la población. Todas esas tendencias dependen más de los organismos que del entorno y pueden originarse por preferencias durante el cortejo, o por incompatibilidades genéticas, que hacen que la descendencia de cruces entre diferentes poblaciones no resulte viable o fértil. El mulo es un ejemplo. En la etapa final, la de independencia, las poblaciones recién separadas siguen su evolución particular y son capaces de colonizar otros ámbitos geográficos sin necesidad de hibridarse o mezclarse con otras. Cada una de estas etapas ha sido comprobada en estudios de campo y en laboratorio con diversos organismos.

Existen, en teoría, dos maneras posibles de llevar a cabo la especiación: de modo geográfico, o de modo no geográfico. En la especiación geográfica, el aislamiento inicial surge como resultado de una separación geográfica de las poblaciones. La especiación no geográfica es el resultado de cambios de conducta, o genéticos, de una parte de determinada población local. Por ejemplo, muchos insectos comerán sólo una especie de planta y usarán la forma, el color, o el olor de esta planta como indicadores para la localización de pareja o del lugar para la puesta de sus huevos. Si un grupo de estos insectos, de manera accidental, coloniza una nueva especie de planta y se aparea allí, se produce entonces un grado de aislamiento comparable al que se produciría si ambas poblaciones estuvieran separadas por mucha distancia. Existe una gran controversia acerca de la frecuencia con que aparecen los distintos tipos de especiación pero, en general, se considera más común la especiación geográfica.

La definición biológica de especie no es infalible. Pueden existir siempre algunos casos dudosos para los que la identificación de la especie resulte arbitraria. Esto sucede porque las especies no son entes estáticos. Los estados intermedios de la especiación son los que causan mayores dificultades a la hora de la clasificación e identificación; incluso durante la división celular, cuando sólo hay una o dos células, existe controversia sobre las mismas. La ausencia de casos dudosos sólo podría significar que la evolución hubiera finalizado su recorrido y no siguiera teniendo lugar.

Diversidad.

La comunidad tiene ciertos atributos, entre ellos la dominancia y la diversidad de especies. La dominancia se produce cuando una o varias especies controlan las condiciones ambientales que influyen en las especies asociadas. En un bosque, por ejemplo, pueden ser dominantes una o más especies de árboles, como el roble o el abeto; en una comunidad marina los organismos dominantes suelen ser animales, como los mejillones o las ostras. La dominancia puede influir en la diversidad de especies de una comunidad porque la diversidad no se refiere solamente al número de especies que la componen, sino también a la proporción que cada una de ellas representa.

La naturaleza física de una comunidad queda en evidencia por las capas en las que se estructura, o su estratificación. En las comunidades terrestres, la estratificación está influida por la forma que adoptan las plantas al crecer. Las comunidades sencillas, como los pastos, con escasa estratificación vertical, suelen estar formadas por dos capas: suelo y capa herbácea. Un bosque puede tener varias capas: suelo, herbácea, arbustos, árboles de porte bajo, árboles de porte alto con copa inferior o superior, entre otras. Estos estratos influyen en el medio ambiente físico y en la diversidad de hábitats para la fauna. La estratificación vertical de las comunidades acuáticas, por contraste, recibe sobre todo la influencia de las condiciones físicas: profundidad, iluminación, temperatura, presión, salinidad, contenido en oxígeno y dióxido de carbono.

Hábitat y nicho.

La comunidad aporta el hábitat, el lugar en el que viven las distintas plantas o animales. Dentro de cada hábitat, los organismos ocupan distintos nichos. Un nicho es el papel funcional que desempeña una especie en una comunidad, es decir, su ocupación o modo de ganarse la vida. Por ejemplo, el candelo oliváceo vive en un hábitat de bosque de hoja caduca. Su nicho, en parte, es alimentarse de insectos del follaje. Cuanto más estratificada esté una comunidad, en más nichos adicionales estará dividido su hábitat.

Tasas de crecimiento de la población.

Las poblaciones tienen una tasa de nacimiento (número de crías producido por unidad de población y tiempo) una tasa de mortalidad (número de muertes por unidad de tiempo) y una tasa de crecimiento. El principal agente de crecimiento de la población son los nacimientos, y el principal agente de descenso de la población es la muerte. Cuando el número de nacimientos es superior al número de muertes la población crece y cuando ocurre lo contrario, decrece. Cuando el número de nacimientos es igual al de muertes en una población dada su tamaño no varía, y se dice que su tasa de crecimiento es cero.

Al ser introducida en un medio ambiente favorable con abundantes recursos, una pequeña población puede experimentar un crecimiento geométrico o exponencial. Muchas poblaciones experimentan un crecimiento exponencial en las primeras etapas de la colonización de un hábitat, ya que se apoderan de un nicho infraexplotado o expulsan a otras poblaciones de uno rentable. Las poblaciones que siguen creciendo exponencialmente, no obstante, acaban llevando al límite los recursos, y entran con rapidez en declive debido a algún acontecimiento catastrófico como una hambruna, una epidemia o la competencia con otras especies. En términos generales, las poblaciones de plantas y animales que se caracterizan por experimentar ciclos de crecimiento exponencial son especies con abundante descendencia y se ocupan poco de sus crías o producen abundantes semillas con pocas reservas alimenticias. Estas especies, que acostumbran a tener una vida corta, se dispersan con rapidez y son capaces de colonizar medios ambientes hostiles o alterados. Se conocen como especies generalistas o estrategas de la R, aunque a menudo reciben también el nombre de especies oportunistas, y se caracterizan por presentar altas tasas de reproducción, pocas exigencias ecológicas y no explotar con eficacia los recursos.

Otras poblaciones tienden a crecer de forma exponencial al comienzo y logísticamente a continuación, es decir, su crecimiento va disminuyendo al ir aumentando la población, y se estabiliza al alcanzar los límites de la capacidad de sustentación de su medio ambiente. A través de diversos mecanismos reguladores, tales poblaciones mantienen un cierto equilibrio entre su tamaño y los recursos disponibles. Los animales que muestran este tipo de crecimiento poblacional tienden a tener menos crías, pero les proporcionan atención familiar; las plantas producen grandes semillas con considerables reservas alimenticias. Estos organismos tienen una vida larga, tasas de dispersión bajas y son malos colonizadores de hábitats alterados. Suelen responder a los cambios en la densidad de población (número de organismos por unidad de superficie) con cambios en las tasas de natalidad y de mortalidad en lugar de con la dispersión. Cuando la población se aproxima al límite de los recursos disponibles, las tasas de natalidad disminuyen y las de mortalidad entre jóvenes y adultos aumentan. Se conocen como especies especialistas o estrategas de la K y se caracterizan por presentar menor fecundidad, mayores exigencias ecológicas y mejor aprovechamiento de los recursos.

Interacciones en la comunidad.

Las principales influencias sobre el crecimiento de las poblaciones están relacionadas con diversas interacciones, que son las que mantienen unida a la comunidad. Estas incluyen la competencia, tanto en el seno de las especies como entre especies diferentes, la depredación, incluyendo el parasitismo, y la coevolución o adaptación.
 

Competencia.

Cuando escasea un recurso compartido, los organismos compiten por él, y los que lo hacen con mayor éxito sobreviven. En algunas poblaciones vegetales y animales, los individuos pueden compartir los recursos de tal modo que ninguno de ellos obtenga la cantidad suficiente para sobrevivir como adulto o reproducirse. Entre otras poblaciones, vegetales y animales, los individuos dominantes se apoderan de la totalidad de los recursos y los demás quedan excluidos. Individualmente, las plantas tienden a aferrarse al lugar donde arraigan hasta que pierden vigor o mueren, e impiden que sobrevivan otros individuos controlando la luz, la humedad y los nutrientes del entorno.

Muchos animales tienen una organización social muy desarrollada a través de la cual se distribuyen recursos como el espacio, los alimentos y la pareja entre los miembros dominantes de la población. Estas interacciones competitivas pueden manifestarse en forma de dominancia social, en la que los individuos dominantes excluyen a los subdominantes de un determinado recurso, o en forma de territorialidad, en la que los individuos dominantes dividen el espacio en áreas excluyentes, que ellos mismos se encargan de defender. Los individuos subdominantes o excluidos se ven obligados a vivir en hábitats más pobres, a sobrevivir sin el recurso en cuestión o a abandonar el área. Muchos de estos animales mueren de hambre, por exposición a los elementos y víctimas de los depredadores.

La competencia entre los miembros de especies diferentes provoca el reparto de los recursos de la comunidad. Las plantas, por ejemplo, tienen raíces que penetran en el suelo hasta diferentes profundidades. Algunas tienen raíces superficiales que les permiten utilizar la humedad y los nutrientes próximos a la superficie. Otras que crecen en el mismo lugar tienen raíces profundas que les permiten explotar una humedad y unos nutrientes no disponibles para las primeras.

Depredación.

Una de las interacciones fundamentales es la depredación, o consumo de un organismo viviente, vegetal o animal, por otro. Si bien sirve para hacer circular la energía y los nutrientes por el ecosistema, la depredación puede también controlar la población y favorecer la selección natural eliminando a los menos aptos. Así pues, un conejo es un depredador de la hierba, del mismo modo que el zorro es un depredador de conejos. La depredación de las plantas incluye la defoliación y el consumo de semillas y frutos. La abundancia de los depredadores de plantas, o herbívoros, influye directamente sobre el crecimiento y la supervivencia de los carnívoros. Es decir, las interacciones depredador-presa a un determinado nivel trófico influyen sobre las relaciones depredador-presa en el siguiente. En ciertas comunidades, los depredadores llegan a reducir hasta tal punto las poblaciones de sus presas que en la misma zona pueden coexistir varias especies en competencia porque ninguna de ellas abunda lo suficiente como para controlar un recurso. No obstante, cuando disminuye el número de depredadores, o estos desaparecen, la especie dominante tiende a excluir a las competidoras, reduciendo así la diversidad de especies.

Coevolución.

La coevolución es la evolución conjunta de dos especies no emparentadas que tienen una estrecha relación ecológica, es decir, que la evolución de una de las especies depende en parte de la evolución de la otra. La coevolución también desempeña un papel en las relaciones depredador-presa. Con el paso del tiempo, al ir desarrollando el depredador formas más eficaces de capturar a su presa, ésta desarrolla mecanismos para evitar su captura. Las plantas han desarrollado mecanismos defensivos como espinas, púas, vainas duras para las semillas y savia venenosa o de mal sabor para disuadir a sus consumidores potenciales. Algunos herbívoros son capaces de superar estas defensas y atacar a la planta. Ciertos insectos, como la mariposa monarca, pueden incorporar a sus propios tejidos sustancias venenosas tomadas de las plantas de las que se alimentan, y las usan como defensa contra sus depredadores. Otros organismos similares relacionados con ella (véase Mariposa virrey) pueden adquirir, a través de la selección natural, un patrón de colores o una forma que imita la de la especie no comestible. Dado que se asemejan al modelo desagradable, los imitadores consiguen evitar la depredación. Otros animales recurren a asumir una apariencia que hace que se confundan con su entorno o que parezcan formar parte de él. El camaleón es un ejemplo bien conocido de esta interacción. Algunos animales que emplean olores desagradables o venenos a modo de defensa suelen exhibir también coloraciones de advertencia, normalmente colores brillantes o dibujos llamativos, que actúan como aviso adicional para sus depredadores potenciales. Véase Adaptación; Mimetismo.

Otra relación coevolutiva es el mutualismo, en el que dos o más especies dependen la una de la otra y no pueden vivir más que asociadas. Un ejemplo de mutualismo es el de las micorrizas, relación forzosa entre determinados hongos y las raíces de ciertas plantas. En uno de los grupos, el de las ectomicorrizas, los hongos forman una capa o manto en torno a las radicelas. Las hifas de los hongos invaden la radicela y crecen entre las paredes celulares, además de extenderse suelo adentro a partir de ella. Los hongos, que incluyen varias setas comunes de los bosques, dependen del árbol para obtener energía. A cambio, ayudan al árbol a obtener nutrientes del suelo y protegen sus raicillas de ciertas enfermedades. Sin las micorrizas, algunos grupos taxonómicos, como las gimnospermas y algunas angiospermas (aliso, árbol del paraíso), no pueden sobrevivir y desarrollarse. Por su parte, los hongos no pueden existir sin los árboles. El ejemplo más concluyente de simbiosis mutualista lo constituyen los líquenes: una asociación entre un hongo y un simbionte fotosintético, un alga, de cuya interacción se origina un talo estable con estructura y fisiología específicas.

Evolución.

En biología, descendencia con modificaciones, proceso por el que todos los seres vivos de la Tierra han divergido, por descendencia directa, a partir de un origen único que existió hace más de 3.000 millones de años.

A lo largo de la historia ha sido siempre obvio, para la mayoría de las personas, que la gran diversidad de la vida, la increíble perfección con la que están dotados los organismos vivos para sobrevivir y multiplicarse, y la desconcertante complejidad de las estructuras vitales, sólo pueden ser obra de la creación divina. No obstante, una y otra vez han existido pensadores aislados que creían que debía haber una alternativa a la creación sobrenatural. En la antigua Grecia existía la noción de que las especies se transformaban en otras especies. Esta creencia quedó arrinconada hasta que en el siglo XVIII fue retomada por pensadores progresistas como Pierre de Maupertuis, Erasmus Darwin y Jean Baptiste de Lamarck. En la primera mitad del siglo XIX, esta idea se hizo habitual en los círculos intelectuales, en especial en los de temas geológicos, aunque siempre de forma vaga y sin que existiera una visión clara del mecanismo que podía originar estas modificaciones. Fue Charles Darwin (nieto de Erasmus) quien, incitado por la publicación del descubrimiento de Alfred Russel Wallace de su principio de la selección natural, estableció finalmente la teoría de la evolución a través de la publicación: El origen de las especies por medio de la selección natural en 1859, conocido por lo general como El origen de las especies. A partir de 1859 fue difícil dudar que todas las especies vivas, incluida la nuestra, habían evolucionado de otras. La biología molecular moderna hace que resulte difícil dudar que el origen de todas las especies puede remontarse a un antecesor común único, que todas las formas de vida conocidas comparten el mismo código genético y que es muy improbable que hubieran podido dar con ello de forma independiente.

La Tierra se formó hace unos 4.000 a 5.000 millones de años. Existen fósiles de criaturas microscópicas del tipo de las bacterias que prueban que surgió la vida hace unos 3.000 millones de años. En algún momento entre estas dos fechas —la evidencia molecular supone que hace cerca de 4.000 millones de años— debió tener lugar el increíble suceso del origen de la vida. Nadie sabe qué ocurrió, aunque los teóricos coinciden en que la clave fue la aparición espontánea de seres que se autorreplicaban, es decir, algo equivalente a los genes en sentido general. Existe menos acuerdo sobre cómo llegó a producirse.

Es probable que al principio la atmósfera de la Tierra contuviera metano, amoníaco, dióxido de carbono y otros gases que abundan aún en otros planetas del sistema solar. Los químicos han reconstruido en los laboratorios estas condiciones primitivas al nivel experimental. Si se mezclan los gases adecuados con agua en un matraz, y se añade energía mediante una descarga eléctrica (simulando la iluminación primitiva), se sintetizan de forma espontánea sustancias orgánicas. Entre éstas se cuentan, en una proporción significativa, aminoácidos (unidades que construyen las proteínas, incluidas todas las enzimas importantes que controlan los procesos químicos de la vida), purinas y pirimidinas (unidades que forman el ARN y ADN). Parece probable que al principio de la existencia de la Tierra sucediera algo similar. Por consiguiente, el mar podría haber sido un caldo de compuestos orgánicos prebiológicos.


Como es natural, el hecho de que las moléculas orgánicas aparecieran en este caldo primitivo, no es suficiente. Como hemos mencionado antes, el paso más importante fue la aparición de moléculas que se autorreplicaban, capaces de producir copias de sí mismas. Hoy, la molécula más conocida que se autorreplica es el ácido desoxirribonucleico (ADN). La creencia de que el propio ADN no podría haber estado presente en el origen de la vida está muy extendida, ya que su replicación depende demasiado de estructuras muy especializadas que no pudieron existir antes del inicio de la propia evolución. El ADN ha sido descrito como una molécula de alta tecnología que apareció con toda probabilidad algún tiempo después del origen de la vida. Tal vez la molécula con la que está emparentada, el ácido ribonucleico (ARN), que aún desempeña varias funciones vitales en las células vivas, fue la molécula autorreplicativa original. O tal vez ésta fue un tipo de molécula diferente. Una vez que las moléculas autorreplicativas se habían formado por casualidad, pudo haberse iniciado algo parecido a la selección natural darwiniana: las variaciones presentes en las poblaciones podrían tener su origen en errores aleatorios en el copiado. Las variantes con una replicación especialmente buena habrían predominado automáticamente en el caldo primitivo, mientras que aquellas que no se replicaron, o que lo hicieron de forma errónea, estarían en una proporción relativamente menos numerosa. Una forma de selección natural molecular condujo a una eficacia mayor entre las moléculas que se replicaban.

Al tiempo que la competitividad entre las moléculas que se replicaban aumentó, el éxito debió alcanzar a aquellas que conseguían desarrollar una habilidad o mecanismo especial para su autoconservación y replicación rápida. Estos mecanismos fueron construidos probablemente mediante la manipulación de otras moléculas, tal vez proteínas. Otros mecanismos manipulados fueron aquellas estructuras previas a las membranas que proporcionaron espacios circunscritos donde incluir las reacciones químicas. Pudo haber sido poco después de este estadio cuando las criaturas simples del tipo de las bacterias dieron lugar a los primeros fósiles hace más de 3.000 millones de años. El resto de la evolución puede ser considerada como una continuación de la selección natural de las moléculas replicativas, ahora denominadas genes, debida a su capacidad para construir por sí mismas estructuras eficaces (cuerpos celulares y multicelulares) para su propia supervivencia y reproducción. Tres mil millones de años es un periodo de tiempo largo, y parece que ha sido lo suficientemente prolongado como para haber dado origen a estructuras tan increíblemente complejas como el cuerpo de los vertebrados y de los insectos. Con frecuencia, se hace referencia a los genes como al medio que emplean los cuerpos para reproducirse. Esto es a primera vista innegable, aunque es más cierto el hecho de que los cuerpos son el medio que utilizan los genes para reproducirse.

Los fósiles no se depositaron más que en una pequeña proporción hasta el cámbrico, hace casi 600 millones de años. Por aquel entonces, la mayoría de los principales filos de animales (los grupos mayores en los que se clasifica el reino Animal) habían aparecido. Como es obvio, las criaturas con partes esqueléticas duras, como los dientes, tienen más probabilidades de fosilizarse y, por tanto, predominan en el registro fósil. Un gran número de los primeros vertebrados aparecieron en yacimientos de hace más de 300 millones de años: criaturas pisciformes, completamente cubiertas por un armazón duro, tal vez adaptadas para escapar de los euriptéridos, que eran depredadores submarinos gigantes del tipo de los escorpiones que abundaban en los mares en aquellos tiempos. En cuanto a los vertebrados, la Tierra fue colonizada en primer lugar, hace aproximadamente 250 millones de años, por peces con aletas lobuladas y pulmones, después por anfibios y por varios tipos de animales más perfeccionados que denominamos reptiles. Los mamíferos y, más tarde, las aves surgieron de dos ramas diferentes de reptiles. La rápida divergencia de los mamíferos en la rica variedad de tipos que existen hoy en día, desde las zarigüeyas a los elefantes, de los osos hormigueros a los monos, parece que ha sido originada por el vacío dejado por la extinción catastrófica de los dinosaurios hace 65 millones de años.

Aunque, como es natural, nos detenemos más en la evolución de nuestra propia clase —los vertebrados, los mamíferos y los primates— éstos constituyen sólo una pequeña rama del gran árbol de la vida. Se reconocen algunas docenas de filos de animales, y los vertebrados constituyen sólo un subfilo dentro de uno de ellos. Además del reino Animal, otras agrupaciones evolucionadas que se admiten de forma convencional como reinos son las plantas (reino Vegetal), los hongos (reino Hongos) y los protistas unicelulares (reino Protistas), que se reúnen todos dentro de un grupo principal único, Eucariotas. Las criaturas que no son eucariotas se denominan procariotas (reino Móneras o Procariotas), en las que se incluyen varios tipos de bacterias (el estado de virus como ser vivo es materia de debate: muchos de ellos son, con toda probabilidad, fragmentos evadidos de material genético, parásitos desde hace relativamente poco tiempo). Hoy en día, la mayoría acepta que las células eucarióticas se originaron como una unión simbiótica de varias células procarióticas. Dentro de las células eucarióticas existen orgánulos, como las mitocondrias y los cloroplastos, que contienen su propio ADN y que son casi con certeza los descendientes lineales de procariotas ancestrales.

La selección natural; o la supervivencia de los más aptos.

Si, bajo condiciones variables de vida, los seres orgánicos presentan diferencias individuales en casi todas las partes de su estructura, cosa que no puede discutirse; si hay una lucha rigurosa por la existencia, debido a la proporción geométrica de aumento en alguna época, estación o año, y esto tampoco puede discutirse; considerando la infinita complejidad en las relaciones de todos los seres orgánicos entre sí y con sus condiciones de vida, origen de infinita diversidad de estructura, constitución y hábitos que han de ser ventajosos, sería un hecho muy extraordinario el que nunca se hubiesen producido variaciones útiles para el propio bienestar de cada ser, de la misma manera que se han producido tantas variaciones útiles para el ser humano.

Mas si alguna vez se producen variaciones útiles para cualquier ser orgánico, seguramente los individuos así caracterizados tendrán la mayor probabilidad de ser conservados en la lucha por la vida; y debido al fuerte principio de la herencia, tenderán a producir descendencia caracterizada de un modo parecido. A este principio de conservación, o supervivencia de los más aptos, yo le he dado el nombre de Selección Natural. Conduce a la mejora de toda criatura en relación con sus condiciones orgánicas e inorgánicas de vida; y por consiguiente, en la mayoría de los casos, a lo que debe considerarse como un progreso en la organización. Sin embargo, las formas bajas y simples durarán mucho tiempo si están bien adaptadas para sus condiciones de vida también simples.

La selección natural, basada en el principio de que las cualidades se heredan en las edades correspondientes, puede modificar el huevo, la semilla o la cría, tan fácilmente como al adulto. Entre muchos animales, la selección sexual habrá prestado su ayuda a la selección ordinaria, asegurando a los machos más vigorosos y mejor adaptados el mayor número de descendientes. La selección sexual dará también caracteres útiles a los machos solos, en sus luchas o rivalidad con otros machos; y estos caracteres serán transmitidos a un solo sexo o a ambos sexos, según la forma de herencia que predomine.

Si la selección natural ha actuado realmente de este modo adaptando las diversas formas de vida a sus diversas condiciones y estaciones, debe juzgarse por el tenor general y el número de las pruebas en pro y en contra que presentamos en los capítulos siguientes. Pero ya hemos visto que ello acarrea la extinción, y hasta qué punto la extinción ha actuado en la historia del mundo, la geología nos lo indica claramente. Asimismo, la selección natural conduce a la divergencia de carácter; porque cuanto más diverjan los seres orgánicos en estructura, hábitos y constitución, tanto más puede sostenerse un número grande de individuos en la misma región, de lo cual tenemos una prueba con sólo mirar a los habitantes de cualquier lugar pequeño y a las producciones naturalizadas en tierras extranjeras. Por lo tanto, durante la modificación de los descendientes de cualquier especie, y durante la lucha incesante de todas las especies por aumentar en número, cuanto más diversificados lleguen a ser los descendientes, mayores serán sus probabilidades de éxito en la lucha por la vida. Así, las pequeñas diferencias que distinguen a las variedades de la misma especie tienden constantemente a aumentar, hasta que igualan las mayores diferencias entre las especies del mismo género, o incluso de géneros distintos.

Ya hemos visto que la especie que más varía es la especie común, muy difundida y muy distribuida, perteneciente a los géneros más numerosos dentro de cada clase; y estas especies tienden a transmitir a sus modificados descendientes aquella superioridad que ahora las hace ser dominantes en sus propios países. La selección natural, como acaba de observarse, conduce a la divergencia de carácter y a una gran extinción de las formas de vida menos perfeccionadas e intermedias. A base de estos principios puede explicarse la naturaleza de las afinidades y las distinciones generalmente bien definidas entre los innumerables seres orgánicos dentro de cada clase en el mundo entero. Es un hecho realmente maravilloso (pero tendemos a no considerarlo maravilloso, porque estamos familiarizados con el mismo) el de que todos los animales y todas las plantas a través de todo el tiempo y de todo el espacio se relacionen unos con otros formando grupos, subordinados a grupos, tal como observamos en todas partes, a saber, variedades de la misma especie estrechamente relacionadas, formando secciones y subgéneros, especies de distintos géneros mucho menos estrechamente relacionados, y géneros relacionados en diferentes grados, formando subfamilias, familias, órdenes, subclases y clases. Los varios grupos subordinados dentro de cualquier clase no pueden clasificarse en una sola fila, sino que parecen estar arracimados alrededor de puntos, y éstos alrededor de otros puntos, y así sucesivamente en ciclos casi interminables. Si las especies hubiesen sido creadas independientemente, no habría sido posible explicar esta clase de clasificación pero se explica por la herencia y la acción compleja de la selección natural, que provoca la extinción y la divergencia de carácter, según hemos visto ilustrado en el diagrama.

Las afinidades de todos los seres de la misma clase se han representado a veces mediante un gran árbol. Creo que este símil dice en gran parte la verdad. Las ramas verdes y florecientes pueden representar las especies existentes; y las producidas durante años anteriores pueden representar la larga sucesión de especies extinguidas. En cada período de crecimiento, todas las ramas, al crecer, han tratado de extenderse en todos los sentidos y de superar y matar a las ramitas y ramas que las rodeaban, de la misma manera que las especies y los grupos de especies han vencido en todo tiempo a otras especies en la gran lucha por la vida. Los troncos divididos en grandes ramas y éstas en ramas más y más pequeñas, fueron también en otro tiempo, cuando el árbol era joven, retoños florecientes; y esta conexión de los brotes antiguos y actuales en los ramificados brazos puede representar a las mil maravillas la clasificación de todas las especies extinguidas y vivientes en grupos subordinados a otros grupos. De los muchos retoños que florecieron cuando el árbol no era más que un arbusto, sólo dos o tres, convertidos en grandes ramas, sobreviven todavía y sostienen las otras ramas; lo mismo ocurre con las especies que vivieron durante los remotos períodos geológicos, las cuales muy pocas han dejado en pos de sí descendientes vivientes y modificados. Desde el primer crecimiento del árbol, más de una rama de todos los tamaños se ha deteriorado y caído; y estas ramas caídas de diversos tamaños pueden representar aquellos órdenes, familias y géneros enteros que ahora no tienen representantes vivientes y que sólo nos son conocidos en su estado fósil. De la misma manera que aquí y allá vemos una ramita solitaria que sale de la parte baja del tronco de un árbol, que por alguna circunstancia fortuita ha sido favorecida y todavía está viva en su parte superior, así vemos ocasionalmente un animal como el ornitorrinco o el lepidosiren, que en grado exiguo enlaza por sus afinidades a dos grandes ramas de la vida y que, al parecer, se ha salvado de la fatal competencia por haber habitado en un paraje resguardado. Del mismo modo que los retoños dan origen, al crecer, a otros retoños, y éstos, cuando son vigorosos, se ramifican y dominan por todos lados a muchas ramas más débiles, así creo que ha sucedido, por medio de la generación, con el gran Árbol de la Vida, que llena la corteza de la Tierra con sus ramas muertas y rotas, y cubre la superficie con sus incesantes y hermosas ramificaciones.

Fuente: Darwin, Charles. El origen de las especies.

Darwinismo.

Es importante tener en cuenta dos aspectos muy distintos de la aportación de Darwin. Él recogió un gran número de pruebas que demostraban que la evolución había tenido lugar y elaboró la única teoría conocida sobre los mecanismos de la evolución de las especies. Estos descubrimientos también fueron realizados por Wallace de forma independiente. El nombre de Darwin se superpone en el recuerdo al de Wallace debido al gran cúmulo de evidencias que Darwin expuso con gran claridad y fuerza en el texto de El origen de las especies.

Darwin conocía algunas pruebas fósiles y las utilizó para demostrar el hecho de la evolución, aun cuando los geólogos de su época no fueron capaces de adjudicar fechas exactas a dichos fósiles. En 1862, el eminente físico lord Kelvin inquietó a Darwin al demostrar en su calidad de autoridad, y hoy sabemos que se equivocó, que el Sol y, por tanto, la Tierra, no podía tener una antigüedad superior a 24 millones de años. Aunque esta estimación era mucho más acertada que la fecha de 4004 a.C. que en aquel entonces apoyaba la Iglesia para la creación, no concedía el tiempo suficiente que necesitaba la evolución que Darwin proponía. Kelvin utilizó esta estimación y su inmenso prestigio científico como herramientas en contra de la teoría de la evolución. Su error estaba basado en la presunción de que el Sol liberaba calor mediante combustión, en lugar de por fusión nuclear, algo difícil de saber en aquella época.

Además de los fósiles, Darwin utilizó otra prueba menos directa, aunque en muchos sentidos más convincente, para demostrar el hecho de que la evolución había tenido lugar. Las modificaciones que habían sufrido los animales y plantas domesticados eran una prueba persuasiva de que las variaciones evolutivas eran posibles y de la eficacia del equivalente artificial del mecanismo de evolución propuesto por Darwin, la selección natural. Por ejemplo, la existencia de razas locales aisladas tiene una explicación fácil en la teoría de la evolución; la teoría de la creación sólo podría explicarlas si se asumen numerosos “focos de creación” esparcidos por toda la superficie terrestre. La clasificación jerárquica en la que se distribuyen de forma natural los animales y las plantas sugiere un árbol familiar: la teoría de la creación tiene que establecer suposiciones complejas y artificiales acerca de los temas y variaciones que cruzaban la mente del creador. Darwin también utilizó como prueba de esta teoría el hecho de que algunos órganos observados en adultos y embriones parecían ser vestigios. De acuerdo con las teorías de la evolución, estos órganos, como los diminutos huesos de miembros ocultos de las ballenas, son un remanente de los miembros o patas que utilizaban para caminar sus antecesores terrestres. Su explicación plantea problemas a la teoría de la creación. Por lo general, la prueba de que el proceso de la evolución ha existido consiste en un gran número de observaciones detalladas que, en conjunto, adquieren sentido si asumimos la teoría de la evolución, pero que sólo podrían ser explicadas por la teoría de la creación si suponemos que el creador lo disponía cuidadosamente para confundirnos. Las pruebas moleculares modernas han contribuido a demostrar la teoría de la evolución más allá de las ideas más extravagantes de Darwin, y el proceso de la evolución tiene tantas garantías de seguridad como cualquier ciencia.

Refiriéndonos de nuevo a la evolución, la teoría que Darwin y Wallace propusieron de su mecanismo, la selección natural, tiene menos garantías. Ésta sugiere la supervivencia no aleatoria de variaciones de las características hereditarias originadas al azar. Otros británicos victorianos, como Patrick Matthew y Edward Blyth, habían propuesto con anterioridad algo parecido, aunque en apariencia lo consideraron sólo como una fuerza negativa. Parece que Darwin y Wallace fueron los primeros que se dieron cuenta de todo su potencial como una fuerza positiva para dirigir la evolución de todo ser vivo. Evolucionistas anteriores como el abuelo de Darwin, Erasmus, se habían inclinado hacia una teoría alternativa del mecanismo de la evolución, asociada en la actualidad, por lo general, al nombre de Lamarck. Ésta enunciaba que las mejoras adquiridas durante la vida de un organismo, como el crecimiento de los órganos con el uso y su atrofia con el desuso, eran hereditarias. Esta teoría de la herencia de las características adquiridas tiene un atractivo emotivo (por ejemplo, para George Bernard Shaw en su prólogo a Volviendo a Matusalén), aunque la evidencia no la apoya, ni es teóricamente convincente. Incluso si la información genética pudiera de alguna manera viajar hacia atrás desde los cuerpos celulares al material hereditario, es casi inconcebible que el desarrollo embrionario pudiera invertirse de forma que las mejoras adquiridas durante la vida de un animal se codificaran de nuevo en sus genes. Inconcebible o no, la evidencia está en su contra. En la época de Darwin existían más dudas acerca de esta cuestión y, de hecho, el propio Darwin consideró una versión personalizada del lamarckismo, en aquellos momentos en que su teoría de la selección natural se enfrentaba a dificultades.

Aquella dificultad surgió de las ideas que existían en aquella época sobre la naturaleza de la herencia. En el siglo XIX se asumía casi de forma universal que la herencia era un proceso combinado. En esta teoría, los descendientes no sólo tienen un carácter y apariencia intermedia, producto de la combinación de la de sus padres, sino que los factores hereditarios que transmiten a su propia descendencia son así mismo combinaciones intermedias debido a que se produce una inextricable fusión. Se puede demostrar que si la herencia es de tipo combinada es casi imposible que la selección natural darwiniana actúe, ya que la variación disponible se divide a la mitad en cada generación. Esto se expuso en 1867 y preocupó a Darwin lo suficiente como para conducirlo hacia el lamarckismo. Este concepto pudo haber contribuido también al hecho aislado de que el darwinismo fuera relegado temporalmente a principios del siglo XX. La solución al problema que tanto inquietó a Darwin descansa en la teoría de la herencia particular desarrollada por Johann Mendel y publicada en 1865, pero que desafortunadamente no fue leída por Darwin, ni prácticamente por nadie, hasta después de su muerte.

Neodarwinismo.

Los estudios de Mendel, retomados a finales del siglo, demostraron lo que Darwin insinuó vagamente en cierta época, que la herencia es particular, no combinada. Sean o no los descendientes formas intermedias entre sus dos padres, heredan y transmiten partículas hereditarias separadas, que hoy en día denominamos genes. Un individuo hereda o no un gen específico de uno de sus padres. Esto mismo puede aplicarse a los padres; por tanto, un individuo puede también heredar o no un gen específico de uno de sus abuelos. Cada uno de sus genes procede de uno de sus abuelos y, antes de ello, de uno particular de sus bisabuelos. Este argumento puede ser aplicado repetidamente a un número indefinido de generaciones. Los genes únicos y separados se distribuyen de forma independiente a través de las generaciones como las cartas en una baraja, en lugar de combinarse como los ingredientes de un puré.

Esto marca la diferencia de la plausibilidad matemática de la teoría de la selección natural. Si la herencia es particular, la selección natural puede actuar. Como establecieron por primera vez el matemático británico G. H. Hardy y el científico alemán W. Weinberg, no existe una tendencia propia de los genes a desaparecer del conjunto de genes. Si lo hacen será debido a procesos fortuitos, o a la selección natural —porque algo relativo a dichos genes influye en la probabilidad de que los individuos que los posean sobrevivan y se reproduzcan. La versión moderna del darwinismo, denominada neodarwinismo, está basada en esta idea. Ésta fue elaborada entre los años 1920 y 1930 por los genetistas R. A. Fisher, J. B. S. Haldane y Sewall Wright, y consolidada con posterioridad en la década de los años cuarenta en la síntesis conocida como neodarwinismo. La revolución reciente experimentada por la biología molecular iniciada en la década de los años cincuenta, ha reforzado y confirmado, más que modificado, la teoría de los años 1930 y 1940.

La teoría genética moderna de la selección natural puede resumirse en lo siguiente: los genes de una población de animales o plantas que se entrecruzan sexualmente constituyen un conjunto de genes. Los genes compiten en este conjunto de la misma manera que las moléculas primitivas que se reproducían lo hacían en el caldo primitivo. En la práctica, la vida de los genes del conjunto de genes transcurre o asentándose en cuerpos individuales que ellos ayudan a construir, o transmitiéndose de un cuerpo a otro a través del espermatozoide o del óvulo en el proceso de la reproducción sexual. Ésta mantiene los genes mezclados y el hábitat a largo plazo de los genes es el conjunto genético. Cualquier gen que se origina en él es resultado de una mutación u error aleatorio en el proceso de copia de los genes (véase Genética). Una vez que se ha producido una mutación nueva, ésta puede extenderse a través del conjunto genético por medio de la mezcla sexual. La mutación es el origen último de la variación genética. La reproducción sexual y la recombinación genética debida al cruzamiento, muestran que la variación genética se distribuye con rapidez y se recombina en el conjunto genético. Es probable que de cualquier gen de un conjunto genético existan varias copias que procedan de la misma mutación, o de mutaciones paralelas independientes. Por consiguiente, se puede decir que cada gen tiene una frecuencia en el conjunto de genes. Mientras que algunos genes, como el del albinismo, son genes raros en él, otros son habituales. En el ámbito de la genética, la evolución puede definirse como el proceso responsable de la variación de la frecuencia de los genes en el conjunto genético.

Existen varias razones que explican la causa por la que la frecuencia de los genes puede variar: inmigración, emigración, desplazamientos aleatorios y selección natural. La inmigración, emigración y las desviaciones aleatorias no tienen demasiado interés desde el punto de vista de la adaptación, aunque en la práctica pueden ser muy importantes. Sin embargo, la selección natural es fundamental para explicar la mejora de la adaptación, la compleja organización funcional de la vida y aquellos atributos de progreso que, discutiblemente, se pueden exhibir como evolución. La dotación genética de los organismos influye sobre su propio desarrollo. Algunos tienen mejores cualidades para sobrevivir y reproducirse que otros. Los organismos que son buenos, es decir, aquéllos cuyas características para sobrevivir y reproducirse son mejores, tenderán a aportar más genes a los conjuntos genéticos del futuro que aquéllos cuyas características sean malas para estos fines: los genes que tienden a formar organismos buenos serán predominantes en los conjuntos genéticos. La selección natural se traduce en el distinto éxito que alcanzan los organismos en la supervivencia y reproducción: esto es importante debido a las consecuencias que supone para la supervivencia de los genes en el conjunto genético.

No todas las muertes selectivas conducen a cambios evolutivos. Por el contrario, la mayor parte de la selección natural se denomina selección estabilizadora, por cuanto elimina genes del conjunto genético que tienden a producir desviaciones de una forma que ya es óptima. Pero cuando las condiciones del medio cambian, bien por una catástrofe natural o por una evolución más perfecta de otras criaturas (depredadores, víctimas, parásitos y otros), la selección puede conducir a una variación evolutiva.

Bibliografía sugerida.

Balzer, W. Cómo hacer teorías. Madrid: Alianza Editorial, 1997. Texto divulgativo en el que se explican los diferentes procesos que conducen a la formulación de una teoría.
Gete-Alonso, J. C. y Del Barrio, V. Medida y realidad. Barcelona: Biblioteca Alhambra, 1988. Texto de carácter didáctico y práctico en el que a través de una serie de actividades y ejercicios se analizan las características del método científico.
Latour, Bruno y otros. La vida en el laboratorio. La construcción de los hechos científicos. Madrid: Alianza Universidad, 1996. Interesante libro de divulgación en el que un filósofo y un sociólogo analizan y critican el comportamiento de los científicos en sus laboratorios.
López Cano J. L. Método e hipótesis científicas. México: Editorial Trillas, 1980. Estudio del método científico utilizando diferentes ejemplos históricos.
Poincare, Henri. Sobre la ciencia y su método. Barcelona: Círculo de Lectores, 1997. Este gran científico describe con sencillez y claridad la esencia del método científico.
Popper, Karl. La lógica de la investigación científica. Madrid: Editorial Tecnos, 1967. Texto clásico que ha dado lugar a una nueva forma de ver el método científico y en el que se plantea la investigación científica, no como fruto de un método inductivo, sino como el resultado de contrastar y “falsar” hipótesis.
Riveros, G. y Rosas, L. El método científico aplicado a las ciencias experimentales. México: Editorial Trillas, 1982. Texto didáctico en el que se describe cómo aplicar el método científico en la enseñanza de las ciencias experimentales.
Royston, M. Descubrimientos accidentales en la ciencia. Madrid: Alianza Editorial, 1992. Analiza las circunstancias que se dieron en algunos descubrimientos y determina el grado de importancia que tuvo la casualidad en todos ellos.
Usabiaga, C. y otros. Aproximación didáctica al método científico. Madrid: Narcea Ediciones, 1984. Reflexión didáctica sobre los principales procesos del método científico y su utilización en la didáctica de las ciencias.
Attenborough, David. La vida a prueba. Barcelona: RBA Editores, 1993. Obra divulgativa basada en la serie de televisión inglesa de la BBC.
Attenborough, David y otros. El planeta vivo. Barcelona: Plaza &Janés Editores, 1990. Obra divulgativa sobre diferentes aspectos de la vida en la Tierra.
Begon, M. y otros. Ecología. Individuos, poblaciones y comunidades. Barcelona: Ediciones Omega, 1988. Tratado de ecología; incluye bibliografía extensa.
Casado, S. Los primeros pasos de la ecología en España. Madrid: MAPA, 1997. Obra divulgativa sobre el comienzo de la ecología en España.
Colinvaux, Paul. Por qué son escasas las fieras. Madrid: Ediciones Hermann Blume, 1983. Obra divulgativa para iniciarse en el campo de la ecología.
Díaz Pineda, Francisco. Ecología I: ambiente físico y organismos vivos. Madrid: Editorial Síntesis, 1989. Obra divulgativa sobre ecología.
Dreux, Philippe. Introducción a la ecología. Madrid: Alianza Editorial, 1986. Obra divulgativa para introducirse en el campo de la ecología.
Hutchinson, G. E. El teatro ecológico y el drama evolutivo. Barcelona: Editorial Blume, 1979. Obra de carácter divulgativo sobre biología, ecología y evolución.
Krebs, Charles J. Ecología. Madrid: Ediciones Pirámide, 1986. Tratado de ecología; incluye bibliografía.
Margalef, Ramón. Ecología. Barcelona: Editorial Planeta, 4ª ed., 1986. Tratado clásico de ecología; incluye bibliografía.
Margalef, Ramón. Ecología. Barcelona: Editorial Planeta, 1992. Obra sobre ecología entre divulgativa y rigurosa.
McNaughton, S. J y otros. Ecología general. Barcelona: Ediciones Omega, 1984. Tratado de ecología; incluye glosario y bibliografía.
Odum, E. P. Ecología. México, D. F.: McGraw-Hill - Interamericana de México, 1987. Tratado clásico de ecología.
Wagner, Christiane. Entender la ecología. Barcelona: Editorial Blume, 1994. Manual explicativo de los principales conceptos de ecología.

Temas relacionados con la Paleontología

 

Usted es el visitante numero que consulta esta sección.


En tu hogar

Formato PDF

Archivo

Tu Homepage

En tu mail

En tu PDA
Bajar Zip   Imprimir
RSS

Volver a la Pagina Anterior 

^ Arriba

Pagina Principal del Grupo Paleo

Principal PaleoArgentina Agregar en Mis Favoritos Contáctese a PaleoArgentina

Copyright  ©  2001 - PaleoArgentina Web. Pagina de Divulgación Científica del Grupo Paleo Contenidos Educativos. Aviso Legal Pagina Abierta a toda la comunidad. Todos los derechos reservados.  www.grupopaleo.com.ar/paleoargentina/.

 

Política de privacidad   Objetivos   Declaración de responsabilidad   Aviso Legal   Colaboraciones   Contactos   Salir

 

En tu Facebook

se el primero de tus amigos

 
 

It selects Language

 

+  idiomas / + Language

 
 

 

 

 

 

Queres agregar algo o notificar un error? -   PaleoArgentina es un lugar abierto a toda la comunidad científica, técnica y aficionados. grupopaleo@gmail.com

Aviso Legal

 

 

 

 
Grupo Paleo
PaleoArgentina
Agregar a Mis Favoritos 
Presentación
Objetivos
Colaboraciones
Copyright 
Política de privacidad 
Declaración de responsabilidad 
Aviso Legal
 

Buscanos en

como

 
Introducción
PaleoGuia
Precámbrico
Paleozoico
Triasico
Jurasico
Cretácico
Paleoceno
Eoceno
Oligoceno
Mioceno
Plioceno
Pleistoceno
Holoceno
Bibliografía
 

 
Paleo Pioneros
Paleo Lectores
Paleo Divulgación
Paleo Instituciones
Paleo Exposiciones
Paleo Congresos
Paleo Resúmenes
Paleo Bibliografía
Paleo Turismo
Paleo Web Site
Paleo Climatología
Paleo Internacional
Paleo Hemeroteca
Paleo Glosario
Paleo Videos
Paleo Animatrónica
 

 
Sabias que?
Tiempo Geológico
Donde Estudiar 
Para los mas pequeños
El origen de la vida
Ingreciones Marinas
Estampillas Fósiles
Nuestros Artistas
Antartida - Antartica
Documentales y.....
Principales Yacimientos
Apuntes Universitarios
Paleo Escolar
Preguntas Frecuentes
Ley de Protección
Geografía Continental
Combustibles Fósiles
 

 

 

 

 

 

EXTRAER, ROMPER, APROPIARSE O VENDER FÓSILES ESTA PENALIZADO!!!

>>Ver Ley